Drilling for Papers in INKE

Stan Ruecker
Illinois Institute of Technology

Geoffrey Rockwell, Lindsay Doll, Mark Bieber, & Shannon Lucky
University of Alberta

Stéfan Sinclair
McGill University

Milena Radzikowska
Mount Royal University

Christian Vandendorpe
University of Ottawa

Ray Siemens
University of Victoria

Teresa Dobson
University of British Columbia

Michael Eberle-Sinatra
Université de Montréal

Abstract
In this article, we discuss the first year research plan for the INKE interface design team, which focuses on a prototype for chaining. Interpretable as a subclass of Unsworth's scholarly primitive of “discovering”, “chaining” is the process of beginning with an exemplary article, then finding the articles that it cites, the articles they cite, and so on until the reader begins to get a feel for the terrain. The chaining strategy is of particular utility for scholars working in new areas, either through doing background work for interdisciplinary interests or else by pursuing a subtopic in a domain that generates a paper storm of publications every year. In our prototype project, we plan to produce a system that accepts a seed article, tunnels through a number of levels of citation, and generates a summary report listing the most frequent authors and articles. One of the innovative features of this prototype is its use of the experimental “oil and water” interface effect, which uses text animation to provide the user with a sense of the underlying process.

Keywords
Interface design; INKE; Research plan; Prototyping; Citations; Content searching; Search tool

© 2012 Stan Ruecker, Geoffrey Rockwell, Lindsay Doll, Mark Bieber, Shannon Lucky, Stéfan Sinclair, Milena Radzikowska, Christian Vandendorpe, Ray Siemens, Teresa Dobson, & Michael Eberle-Sinatra. This Open Access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc-nd/2.5/ca), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Communic recovered. They, for instance, take a human-centred approach. They added, among the efforts to enhance information systems, consensus that better digital tools are needed to facilitate this practice (e.g., Ellis (1989); Buchanan et al., 2005). Among the efforts to enhance information retrieval technologies, Buchanan, Cunningham, Blandford, Rimmer, and Warwick (2005) observed that the use of references and citations in known sources to find unknown sources (i.e., citation chaining) was the most commonly reported research practice. They also noted that other behaviour previously defined by Ellis (1989) were reported by humanities academics, with monitoring (i.e., tracking references) being the second most frequently mentioned strategy, followed by browsing (i.e., semi-focused searching).

In a later study, Whitmire (2003) discovered that citation chaining is a dominant and effective information seeking strategy of undergraduate students, particularly among those rated at a medium-high or high level of epistemological development. Investigating the discrepancy between the skills of humanities scholars and available information retrieval technologies, Buchanan, Cunningham, Blandford, Rimmer, and Warwick (2005) observed that the use of references and citations in known sources to find unknown sources (i.e., citation chaining) was the most commonly reported research practice. They also noted that other behaviours previously defined by Ellis (1989) were reported by humanities academics, with monitoring (i.e., tracking particular authors, articles, or journals) being the second most frequently mentioned strategy, followed by browsing (i.e., semi-focused searching).

Furthermore, through in-depth interviews with 100 graduate students across disciplines, George, Bright, Hurlbert, Linke, St. Clair, and Stein (2006) found that almost half reported using the chaining process to establish a body of literature. Their study demonstrated that citation chaining was used most by computer science students (64%), followed closely by science and humanities students (62% and 60%, respectively). Those in art/architecture reported using it the least frequently (25%). They also noted that this information behaviour is supported by both human (e.g., professors/advisors often recommended the initial source(s) from which chaining was conducted) and computer resources (100% use of the internet for this research was reported).

However, despite evidence that citation chaining is commonly utilized, there is a consensus that better digital tools are needed to facilitate this practice (e.g., Ellis 1989; Buchanan et al., 2005). Among the efforts to enhance information systems, Kerne and Smith (2004), for instance, take a human-centred approach. They
proposed an information discovery (ID) framework—which combines cognitive and digital processes—to inform the design of more user-friendly and effective tools for information seeking, foraging, discovery, and usage. To specifically support citation chaining, Mackinlay, Rao, and Card (1995) developed the Butterfly, a visualization application for the exploration of multiple bibliographic repositories. This system enables rapid and comprehensive search and browsing activities through the integration of the following techniques: visualization, created “link-generating” queries, asynchronous query processes, and process controllers. In the Butterfly, bibliographic material is fastened to interface objects (called “butterflies”) that list an article’s references on one “wing” and its citers on the opposite “wing.” Users can perform backward and forward chaining simply by following combinations of related butterflies (c.f. the ISI Web of Science).

The Paper Drill prototype

The previous work in this area has resulted in a variety of online citation tools connected to specific kinds of data, typically but not exclusively in the sciences, such as CiteSeer, the ISI Web of Science, Association for Computing Machinery, and PaperScope. These systems provide a means of carrying out the process of chaining, allowing the user to select a “seed” article as a starting point, then seeing all the articles that cite it and all the articles that are cited. In some cases (such as the ISI Web of Science), a level can be assigned so that the visualization can include citations at more than a single remove.

What remains to be done is to create a system that helps to provide not only a simpler process to do chaining, but also a preliminary result of the chaining activity, in the form of a summary that shows the most commonly cited authors and articles. Our intention is therefore to build on these ideas in order to provide a tool that will allow the user to select a “seed” article, indicate how many levels deep to go, then have the system traverse the available metadata and articles to produce a summary report of the authors and articles most cited starting from that seed, as well as links (where possible) back to the articles.

A variety of controls should be useful. For instance, by allowing the user to set the threshold number of items necessary for an author or item to be included in the report, the scope of the results could be dynamically adjusted to accommodate frequency. Similarly, the user should be able to decide whether or not to include various different indications of authorship. For instance, should the system include articles in the total count for an author if that person is not the first author, or not the sole author? Similarly, there may be cases where the user would only wish to see cases where the author is the last author, since one of the conventions in the sciences is that the last author is often the senior scientist who runs the lab. This strategy would therefore allow the possibility of identifying papers emerging from specific research labs.

There are numerous technical and theoretical issues to be worked through with this approach, including the need for consistent data, the benefits of separating concerns by using a proxy layer to isolate interface design from collections, and the implications for researchers in the humanities of having such a process automated. Consistent data is essential in helping to distinguish between similar or even identical author names, as well as author names in various locations on co-authored papers. It is also important to be able to identify identical articles cited under slightly different titles (e.g. using an
Development of a proxy layer is essential in that it allows the interface design to proceed in the absence of “real” data being available from the databases. It is a matter of negotiation, however, in terms of how much processing, filtering, sorting, and so on is carried out at the server and delivered through the proxy, and how much is handled at the proxy layer or even up at the interface.

We intend that the implications for humanities researchers of having the process automated will be the subject of further research. Ideally, having fewer steps to carry out in chaining will allow researchers to do more of it and to spend more time in looking at the results rather than in producing this initial overview that the software will now provide.

Finally, although it is possible to envision a variety of conventional interface designs that would provide the affordances we outline for the Paper Drill, we are also experimenting with providing the Paper Drill functionality within the context of the oil and water browser, where the seed article is literally dragged, along with its settings, onto a visual representation of a collection, so that the process of selection can be animated.

Future work

Our goal is to create a working prototype of the system and collaborate with the INKE User Experience team on setting up user studies to help us better understand some of these issues. We are also working with the INKE Information Management team on developing a proper application programming interface (API) or proxy layer that will keep interface design separated from the database work. Our principal partner in this initiative is Synergies, a platform for the publication of research results which provides an extensive database of journals in the humanities and social sciences. Finally, the INKE Reader Studies team provides a context for the Paper Drill within the history of various citation systems and formats.

References

ISI Web of Science. URL: http://apps.webofknowledge.com [August 15, 2009].

