
CISP Press
Scholarly and Research Communication
Volume 6, Issue 2, Article ID 0201220, 11 pages
Journal URL: www.src-online.ca
Received June 1, 2015, Accepted July 13, 2015, Published October 14, 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

© 2015 Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor,
Antonio Hudson, & Omar Rodriquez. is Open Access article is distributed under the terms of the
Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc-nd/2.5/ca), which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Why Experimental Interfaces Should Include an Application Programming
Interface

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, & Szu-Ying Ching
IIT Institute of Design

Jennifer Windsor & Omar Rodriquez
University of Alberta

Antonio Hudson
Illinois Institute of Techology

INKE Research Group

Stan Ruecker is Associate
Professor at the Institute of
Design, Illinois Institute of
Technology. Email: sruecker
@id.iit.edu .

Peter Hodges is a PhD
student at the Institute of
Design, Illinois Institute of
Technology. Email: phodges
@id.iit.edu .

Nayaab Lokhandwala is an
MDes student at the Institute
of Design, Illinois Institute of
Technology. Email: nayaab
@id.iit.edu .

Szu-Ying Ching is an MDes
student at the Institute of
Design, Illinois Institute of
Technology. Email: sching
@id.iit.edu .

Jennifer Windsor is an MA
student at the University of
Alberta. Email: jjwindsor
@gmail.com .

Antonio Hudson is a BSc
student at the Illinois Institute
of Technology. Email:
ahudson2@hawk.iit.edu .

Omar Rodriquez is an IT
specialist at the University of
Alberta. Email: omar
.rodrigueza@gmail.com .

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

1

Abstract
An Application Programming Interface (API) can serve as a mechanism for separating
interface concerns on the one hand from data and processing on the other, allowing for
easier implementation of alternative human-computer interfaces. e API can also be
used as a sounding board for ideas about what an interface should and should not
accomplish. Our discussion will take as its case study our recent work in designing
experimental interfaces for the visual construction of Boolean queries, for a project we
have previously called the Mandala Browser.

Keywords
Application Programming Interface; API; Experimental interface design; Digital
humanities; Prototype

mailto:omar.rodrigueza@gmail.com
mailto:omar.rodrigueza@gmail.com
mailto:ahudson2@hawk.iit.edu
mailto:jjwindsor@gmail.com
mailto:jjwindsor@gmail.com
mailto:sching@id.iit.edu
mailto:sching@id.iit.edu
mailto:nayaab@id.iit.edu
mailto:nayaab@id.iit.edu
mailto:phodges@id.iit.edu
mailto:phodges@id.iit.edu
mailto:sruecker@id.iit.edu
mailto:sruecker@id.iit.edu
http://creativecommons.org/licenses/by-nc-nd/2.5/ca
http://creativecommons.org/licenses/by-nc-nd/2.5/ca
http://www.src-online.ca

Implementing New
Knowledge Environments
(INKE) is a collaborative
research intervention
exploring electronic text,
digital humanities, and
scholarly communication. e
international team involves
over 42 researchers, 53 GRAs,
4 staff, 19 postdocs, and 30
partners. Website:
http://inke.ca

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

2

Introduction
In this article, we discuss the potential for a central role in experimental interface
design for what some people consider a relatively secondary component of human-
computer interaction systems: the Application Programming Interface (API).
Researchers developing experimental ICT interface prototypes have historically treated
the API as a system element meriting little attention. e goal of prototype
development is to generate new knowledge with minimal resource expenditure.
Prototype system capability to address a research question and begin producing
evidence is sufficient resource expenditure. Seemingly necessary functionality is oen
not added to experimental prototypes, on the basis that everyone already knows this
functionality is necessary – the prototype developer judges that any potential benefit is
considerably less than the time, energy, and cost required to include it. Oen
developers judge that the API falls within this category. Primarily used for providing
programmatic access to collection data for programmers not working directly with the
collection, the API is oen released to the public some years aer the first release of a
production system (e.g., Flickr, Twitter).

e concept of the API originated in the eighties in the soware development
community. It was used then, and is still used, as a means of exchanging data across
organizational boundaries. With the advent of the Web, and particularly since the turn
of the millennium, it has also been used to give public access to collection resources,
whether for analysis or to allow the development of interface alternatives. Some
popular APIs of this kind are available through Flickr, Twitter, and Google Maps.

In terms of technology, the most common way of creating a Web-based API is using
Representational State Transfer (REST), where the underlying resources are accessed
through a URL that returns XML or JSON rather than HTML. Discussions of APIs
tend to focus on methods for measuring the usability and quality of both the soware
and the documentation. Umer Farooq and Dieter Zirkler (2010), for instance, propose
evaluating usability through peer reviews, while Jens Gerken, Hans-Christian Jetter,
Michael Zöllner, Martin Mader, and Harald Reiterer (2011) suggest that concept maps
might be helpful. Hewijin Christine Jiau and Feng-Pu Yang (2012) offer a strategy for
the reuse of crowdsourced documentation to reduce the bottleneck in open source
documentation of APIs, while Robert Watson, Mark Stamnes, Jacob Jeannot-Schroeder,
and Jan Spyridakis (2013) report from their survey of 33 popular open source projects
that considerable attention to documentation was evident: most of the elements that
had previously been identified as desirable for documentation to contain were present.

From a business perspective, the quality of an API can be of significant advantage – or
disadvantage. For example, the API to the Flickr archive resulted in a variety of
alternative interfaces for the photo collection, increasing its use. e API also provided
researchers with an opportunity to use Flickr as a data source, further extending its
reach and influence. Neil Mansilla (2012) lists another half a dozen companies that
have been celebrated for their public APIs, including eBay, Expedia, USA Today, Rovi,
and Klout. Netflix, on the other hand, has been widely recognized for its repeated
failure to create a public API, although its internal API is another story (Jacobson,
2014). However, more than reputation among the “digiterati” might be at stake.

http://inke.ca

According to Joshua Bloch (2005), in some cases poor APIs have had a negative effect
on the corporate bottom line, and have occasionally even led to bankruptcy.

On a more abstract level, Cleidson de Souza, David Redmiles, Li-Te Cheng, David
Millen, and John Patterson (2004) discuss the sociological ramifications of the
development and use of APIs within an organization. ey point out that one of the
benefits – namely the separation of concerns through “information hiding” – is also the
source of one of the drawbacks, which is the reduced collaboration between the
various programming teams involved. e solution they propose to this dilemma, on
which we elaborate below in our own context, is to use the design of the API as a
mediating artifact – an opportunity for the various teams to develop a shared
understanding of the larger system of which the API is a component.

Separation of concerns
Programmers commonly speak of the “separation of concerns,” which means,
essentially, to divide a project’s code into relatively independent parts. Strategies for
accomplishing this include modularity, layering, and object-orientation. However, in
practical terms the separation of concerns is not always a goal that is easy to meet. e
reasons are several, including lack of clarity about the system architecture, uncertainty
about where to draw the line between concerns, and fundamental disagreement with
the principle. e conceptual framework of object-oriented programming arguably
lends itself (e.g., Pree, 1991) to a kind of separation that is not useful, and may even be
counterproductive, for the purposes of programming and testing a variety of human-
computer interfaces that access the same data and processing.

e reason it might not be useful is that the connection between objects and their
methods naturally leads to a mental frame where the separation of concerns has
already been effectively managed. Since different objects represent unique concerns,
the need to pay special attention is reduced or non-existent – the code will be
automatically easier to maintain and reuse, since adjustments are only necessary at the
appropriate place in the object hierarchy.

However, in experimental settings the ability to switch among interface alternatives is a
productive advantage in at least two situations. In one case, it supports the comparative
testing of similar affordances, where the interfaces offer the same functions in different
ways. In the second instance, the ability to quickly switch in a new interface allows for
introducing and studying new affordances. From this perspective, the primary pair of
concerns that need to be kept separate are really the human-computer interface and
everything else. In terms of development projects, especially at a large scale, one strategy
is the design and use of service-oriented architecture (SOA) or service systems (e.g.,
Kontogiannis, Lewis, Smith, Litoiu, Muller, Schuster, & Stroulia, 2007), which involve a
similar concept of flexibility, but typically require a fairly significant investment.

Thinking by defining the API
Even in an experimental setting, the design and development of an API does represent
an additional investment of resources beyond what is arguably essential for an
individual project. It requires the programmers, who may be used to thinking of

3

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

separation in terms of objects, to think in terms of layers. It necessitates a shi in
attention from the primary objective of the project toward a component that may or
may not prove valuable, but will in any case introduce additional complexity.

If an API is nonetheless desirable, expending effort on deciding what should be
included and what should be le aside, whether for a future iteration or for the
foreseeable future, is worthwhile. e alternative is to produce an experimental
prototype that is not flexible in the sense that it allows for interface variations. In the
Mandala Browser project, for example, we had an existing prototype (Figure 1) where
the code between the human-computer interface, the data, and the processing were
tightly coupled.

Figure 1: e existing Mandala Browser interface, before rewriting the code to add an
API. is version shows an analysis of email messages (email address redacted).

An API for the Mandala Browser would not necessarily have included all the
functionality that the tightly coupled prototype eventually had, such as the ability to
produce print-quality screenshots. However, many of the core functions could be made
available.

THE FULL SET OF FUNCTIONS IN THE EXISTING MANDALA BROWSER
From top to bottom on the le side of the screen:

Opening a file and reading the XML;•
Changing the colour of magnets;•
Managing the data and structure in such a manner that it can be made•
searchable;
Shiing the strength of a magnet to modify locations of subsets of dots;•
Selecting a random search pattern;•
Choosing multiple dots for text display on the right-hand side;•
Zooming in on the magnet display and moving it around;•

4

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

Toggling what data is displayed next to the magnet;•
Toggling what text fields are displayed on the right from the XML; and•
Tracing the history of the searches.•

From the central display:

Clicking a dot toggles its text for reading on the right; and•
Double-clicking a magnet toggles all text for its associated dots.•

From the right side of the screen:

Displaying reading text;•
Indicating the magnet associated with the text;•
Displaying an interactive microtext column;•
Toggling full or truncated display of text items;•
Toggling display of text with field names or without;•
Exporting the current magnet configuration;•
Exporting a print resolution screenshot (300 dpi); and•
Providing help.•

In addition, thinking in terms of future iterations may suggest some functions that
were never added, such as user annotation of searches. Date ranges, or in fact any
numeric ranges, although not currently handled, would also be a useful addition.

An immediate issue in this design context is what processing should be done below the
API, and what should be delegated to the interface. For example, if a list can be sorted
in various ways by the user, should the API return the list
already sorted, or should the interface code be responsible for
managing its own sorting? Similarly, if a snippet of text has
been located using search terms, should the API return the
snippet with the search terms already identified, or should the
interface carry out what is basically a second search to find and
highlight them throughout the document? Figure 2 shows an
early prototype API function drawing as we began to address
these issues. In general, we had three potential types of
functionality in mind: first was the existing purpose of
working with XML-encoded primary and secondary
documents in the humanities; second was identifying and
configuring products in a large manufacturing company; and
third was the analysis of conversation, whether in the form of
transcripts or correspondence.

e sketch, developed in the context of our second use case,
shows some more specific requirements, such as the possibility
of doing sentiment analysis and association, as well as
integration with other data stores such as SAPTM (a common
enterprise data management system). Since the proposed

5

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

Figure 2: Interface, API, and everything else

design context was commercial, potentially dealing with tens of thousands of items, we
decided to focus on a rich-prospect representation of the available metadata. We
relegated the contents to a central space that would contain a number until the user
applied sufficient filtering to allow visibility of individual items (see Figure 3).

To support this proposed interface, we developed the following preliminary list of API
calls, which we realized would be subject to iterative refinement, as well as possible
future additions:

Example function calls

getProduct(productLine, productName, productFeatureList(pColor = color,•
pMaterial = material, pTexture = texture), productOptionsList(Options),
pCostRange = CostRange);
getProduct(productFeaturesList);•
getProduct(productOptions);•
getProduct(productStyleNumber);•
getProduct(productStyleNumber, productFeatureList, productOptions);•
getCategories(); // returns the categories of products defined in the backend; for•
populating category display visualizations in the interface;
getCategorySubTypes(); //list of product category subtype; e.g., under chairs:•
adjustable arm, mobile …;
getProductCombinations(productLineList, productFeatureMatrix,•
productOptionsMatrix);
getProduct(categoryType, categorySubType, pColor);•
getProduct(categoryType, categorySubType, pMaterial);•
getProductTechnicalSpecs(ProductLine, productName, productTechnicalSpecs);•

6

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

Figure 3: A focus on the variety of types of metadata that could appear in this
alternative to the current Mandala Browser interface is suggested by the words shown

around the central display area.

getProductMass(productLine, productName, productStyleNumber);•
getFeatureList(productLine, productName);•
getOptionList(productLine, productName);•
getProduct(CategoryType, CategorySubType, costRange);•
getMediaTypes(); // returns the types of media in the backend; e.g., pictures, 2-•
D drawing, 3-D, video …;
ConstrainVisualReturnType(); e.g. specify only pictures or 2-D drawings;•
ConstrainTextReturnType(); •
ConstrainNumericReturnType();•
ConstrainDataType(); e.g., manufacturing, released only … .•

e new API calls are useful for the new design because they allow the user to specify a
broad range of product attributes and features, as well as the form of the visuals that
will be returned instead of the coloured dots. ey represent, however, only a small
part of the functionality of the original system, selected pieces of which would need to
be accommodated as appropriate with corresponding calls.

However, further consideration reveals
additional potential in the proposed API
approach. With some slight expansion,
the system could provide even more
flexibility for the user. What if, for
instance, we were reading other kinds of
materials, for example where time was a
factor, or dependency, or interchange? In
order to address these questions, we
turned to a discussion of our third
example (See Figures 4-9), where we were
considering the use of the Mandala
Browser in the context of understanding
some form of conversation – perhaps, for
instance, an email exchange. Accordingly,
we anticipated that we would need to
draw on the text of individual
correspondences, the metadata associated
with those correspondences (e.g., date, senders, and receivers), and also dictionary and
thesauri data. To identify ideas, themes, relationships, and patterns within a large
collection of texts, the functionality to cross-reference words and phrases with parts of
speech, lemma, and lexemes is useful. To understand the particularities of the
necessary data involved, we developed a five-step scenario.

Step 1. On initiation (Figure 4), the visualization system algorithmically identifies
“topics of interest” (aspects of which are represented by coloured tokens in the facets
column) and displays them with correspondingly coloured, and sometimes
overlapping, shapes on a grid at the right. Colourless or unselected squares on the grid
represent nonspecific documents that fall outside of the identified topics. A “topic of
interest” collection might, for example, be an exceptionally large number of certain

7

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

Figure 4: Topics of interest are identified algorithmically, and then
displayed as coloured blocks of documents in the grid on the right.

words or combinations of words, or it might be a large number, or alternatively perhaps
a complete absence, of certain words or parts of speech in the collection as a whole, or
just in the correspondence of specific senders, and so on.

At this stage, the interface is accessing the data of the correspondences, both the
comprising text and what can be considered the metadata regarding them – e.g., the

date the correspondence was sent, the
sender, and the receiver. In the “parts of
speech,” the system also cross-references
dictionary/thesauri data to identify which
words are nouns, verbs, adjectives, and
adverbs.

e visualization to the right of the facet
panel displays these topics as coloured
squares (corresponding to the colour of
the tokens) on an expanding and
contracting grid – expanding to best
display selected topics, contracting to
minimize topics not being examined
(while still keeping them visible for
context) – and uncoloured squares that
represent the remaining, unspecified
documents of the full data set. Topics can
overlap and create a subgroup, which may
be of interest in itself.

Step 2. Aer the system identifies topics
and marks them with coloured tokens,
users can adjust token placement, making
the topic squares on the grid larger or
smaller and affecting overlap. At this stage
users also have the opportunity to fine-
tune the specific meaning of specific
words by selecting or deselecting lexemes
and thesauri offerings in the “meaning”
panel (see Figure 5). is section directly
accesses dictionary and thesauri data to
then cross-reference against the textual
data of the correspondences, again
affecting the size and overlap of squares
on the visualization grid.

Step 3. e group of names to the le of the grid represents “senders” of
correspondences; the group on the right, “receivers.” e size and proximity to the top
of the list represents a greater number of correspondences sent or received, calculated
from the metadata of the collection of correspondences. Names can be dragged to the

8

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

Figure 5: e reader is fine-tuning the display.

Figure 6: e names of document senders appear on
the le; recipients on the right.

“senders” or “receivers” list on the facet panel to limit the entire data set to just the
correspondences of those senders or receivers (potentially shrinking the size of several
of the topic squares on the grid), or to an assigned a topic icon (to potentially shrink
the size of just that topic square on the
grid) (see Figure 6).

Step 4. Selecting an entire topic square on
the grid expands it to reveal information
about that collection of data, such as why
the system initially identified it as
“interesting,” the total number of
individual documents, if and how it has
been altered by the user, etc. e
document represents a unique subset of
all other data. Among options to reset to
system generated facets, or to close or
delete this set, there is also the option to
save this selection of correspondences
somewhere else, and the option to use
just this selection as a subset of the
original data and open it in a new
visualization window (see Figure 7).

Step 5. Selecting just one square on the
grid provides a random example of a
document that occurs within that topic’s
data subset. Conversely, selecting a single
document outside of any topic’s data
subset provides a random example of a
document that eludes all of the topics’
established facets. Data accessed in this
part of the visualization includes the text
of the correspondence itself and metadata
– including the sender(s), the receiver(s),
and the date it was sent – highlighting
everything specifically pointed to in this
data subset. e system draws on the
select words and phrases identified either
in the facet panel or the meaning panel
and highlights them too (see Figure 8).

e outcome of this process was a rethinking of the API from a more general
perspective. Items like the sender, receiver, date, and so on could be handled through the
generic XML parsing and searching functions. However, we had added some new files
such as the dictionary and thesaurus, and some new processes such as topic modelling.
In addition, the product-centric naming of the API calls in our second example simply
did not make sense when the interface was interacting with an email collection.

9

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

Figure 7: Selecting an entire topic square yields a
screen that shows its features.

Figure 8: A random sample of a document either from
within a subset or from outside any given subset.

The two perspectives of programming and design
It had become clear to us at this stage that producing an API that was useful for
multiple interfaces was going to prove challenging, in particular for cases where the
underlying collection contents were significantly different. In order to address the
design goal of having a common back end for a variety of human-computer interfaces,
it would be useful to figure out what can be shared across the common API and what
should be customized, and whether or not there is a sufficient proportion of common
calls to make the exercise worthwhile.

From the programming perspective, design changes to an interface can sometimes
come to seem like a form of scope creep. is is particularly true in cases where it is
debatable whether some experimental design feature that requires significant
programming effort may actually produce sufficient value in terms of new knowledge.
Another possible frustration is that experimental designs oen seek not just to provide
new functionality, but also to represent functionality in new ways.

One communication strategy that both perspectives can share is the clear expression of
the research questions that are being addressed with each feature, and with the
combination of features. Positioning the discussion at this higher level of abstraction
has the potential to help accommodate the concerns of both perspectives.

Conclusion
e inclusion of an API in an experimental human-computer interface project can
involve a significant investment of resources, so the advantages must be weighed
against the disadvantages. One of the advantages is that the underlying assets can be
readily reused to support other kinds of interface solutions designed by the team,
potentially reducing expenditures of time, energy, and funding on future iterations of
the project or in other projects with similar requirements. Another advantage is that
the design of the API can help to clarify thinking across the team about the kinds of
affordances the system will privilege and the kinds it will leave aside. Finally, an API
can potentially make the assets accessible to other teams on other projects, following
the open source model.

e disadvantages, however, include not only the time and cost, but also the distraction
from the primary purpose of the project, which resides in the reification of ideas that can
help address a research question. Another disadvantage is that the skills to develop a
good API are not the same as the skills required for the other typical aspects of a research
project, so they either need to be found or developed. Finally, it would appear that an API
is, at least in this context, nearly always a work in progress, which means that it needs to
be included not as a single stage, but rather as an evolving part of a project plan. In this
respect, it involves a commitment beyond the addition of a typical “feature.”

Websites
Flickr, http://flickr.com/
Google Maps, https://www.google.ca/maps?source=tldso
Mandala Browser, http://mandala.humviz.org/
Twitter, https://twitter.com/

10

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

https://twitter.com/
http://mandala.humviz.org/
https://www.google.ca/maps?source=tldso
http://lickr.com/

References
Bloch, J. (2005). How to design a good API and why it matters [keynote]. Library-Centric Software Design

(LCSD) workshop at Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
San Diego, California, October 16-20. URL: http://lcsd05.cs.tamu.edu/#keynote [May 31, 2015].

de Souza, C.R.B., Redmiles, D., Cheng, L., Millen, D., & Patterson, J. (2004). Sometimes you need to see
through walls - A field study of application programming interfaces. Proc. CSCW (2004), 63-71.

Farooq, Umer, & Zirkler, Dieter. (2010). API peer reviews: A method for evaluating usability of
application programming interfaces. In Proceedings of the 2010 ACM conference on Computer
supported cooperative work (CSCW ‘10). New York, NY: ACM. URL: http://dl.acm.org/citation
.cfm?id=1718957 [May 31, 2015].

Ganapathy, Vinod, Seshia, Sanjit A., Jha, Somesh, Reps, Thomas W. , & Bryant, Randal E.. (2005).
Automatic discovery of API-level exploits. In Proceedings of the 27th international conference on
Software engineering (ICSE ‘05) (pp. 312-321). New York, NY: ACM. URL: http://dl.acm.org
/citation.cfm?id=1062518 [May 31, 2015].

Gerken, Jens, Jetter, Hans-Christian, Zöllner, Michael, Mader, Martin, & Reiterer, Harald. (2011). The
concept maps method as a tool to evaluate the usability of APIs. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ‘11) (pp. 3373-3382). New York, NY:
ACM. URL: http://dl.acm.org/citation.cfm?id=1979445 [May 31, 2015].

Jacobson, Daniel. (2014). Top 10 lessons learned from the Netflix API. URL: http://www.slideshare.net
/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014 [May 31, 2015].

Jiau, Hewijin Christine, & Yang, Feng-Pu. (2012). Facing up to the inequality of crowdsourced API
documentation. SIGSOFT Software Engineering Notes, 37(1), 1-9. URL: http://dl.acm.org/citation
.cfm?id=2088892 [May 31, 2015].

Kontogiannis, Kostas, Lewis, Grace A., Smith, Dennis B., Litoiu, Marin, Muller, Hausi, Schuster, Stefan,
& Stroulia, Eleni. (2007). The landscape of service-oriented systems: A research perspective. In
Proceedings of the International Workshop on Systems Development in SOA Environments (SDSOA
‘07). Washington, DC: IEEE Computer Society. URL: http://dx.doi.org/10.1109/SDSOA.2007.12
[May 31, 2015].

Mansilla, Neil. (2012). What are some examples of some successful, API-driven companies? Quora.
URL: http://www.quora.com/What-are-some-examples-of-some-successful-API-driven-
companies [May 31, 2015].

Pree, W. (1991). Object-oriented versus conventional construction of user interface prototyping tools
[doctoral thesis]. Linz, AT: University of Linz. URL: http://www.softwareresearch.net/fileadmin
/src/docs/publications/C002.pdf [May 31, 2015].

Ruecker, Stan, Radzikowska, Milena, & Sinclair, Stéfan. (2011). Visual interface design for digital
cultural heritage: A guide to rich-prospect browsing. Farnham, UK: Ashgate Publishing. URL:
http://www.ashgate.com/isbn/9781409404224 [May 31, 2015].

Tung, Sho-Huan Simon. (1992). Merging interactive, modular, and object-oriented programming
[PhD dissertation]. Bloomington, IN: Indiana University, Computer Science. URL:
http://www.cs.indiana.edu/ftp/techreports/TR349.pdf [May 31, 2015].

Watson, Robert, Stamnes, Mark, Jeannot-Schroeder, Jacob, & Spyridakis, Jan H. (2013). API
documentation and software community values: a survey of open-source API documentation. In
Proceedings of the 31st ACM international conference on Design of communication (SIGDOC ‘13)
(pp. 165-174). New York, NY: ACM. URL: http://dl.acm.org/citation.cfm?id=2507076 [May 31, 2015].

11

Scholarly and Research

Communication

volume 6 / issue 2 / 2015

Stan Ruecker, Peter Hodges, Nayaab Lokhandwala, Szu-Ying Ching, Jennifer Windsor, Antonio
Hudson, & Omar Rodriquez. (2015). Why Experimental Interfaces Should Include an Application
Programming Interface. Scholarly and Research Communication, 6(2): 0201220, 11 pp.

http://dl.acm.org/citation.cfm?id=2507076
http://www.cs.indiana.edu/ftp/techreports/TR349.pdf
http://www.ashgate.com/isbn/9781409404224
http://www.softwareresearch.net/fileadmin/src/docs/publications/C002.pdf
http://www.softwareresearch.net/fileadmin/src/docs/publications/C002.pdf
http://www.quora.com/What-are-some-examples-of-some-successful-API-driven-companies
http://www.quora.com/What-are-some-examples-of-some-successful-API-driven-companies
http://dx.doi.org/10.1109/SDSOA.2007.12
http://dl.acm.org/citation.cfm?id=2088892
http://dl.acm.org/citation.cfm?id=2088892
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
http://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
http://dl.acm.org/citation.cfm?id=1979445
http://dl.acm.org/citation.cfm?id=1062518
http://dl.acm.org/citation.cfm?id=1062518
http://dl.acm.org/citation.cfm?id=1718957
http://dl.acm.org/citation.cfm?id=1718957
http://lcsd05.cs.tamu.edu/#keynote

